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Detecting Parallelism in C Programs withRecursive Data Structures?Rakesh Ghiya, Laurie J. Hendren and Yingchun ZhuSchool of Computer Science, McGill UniversityMontreal, CANADA H3A 2A7fghiya,hendren,yingg@cs.mcgill.caAbstract. In this paper we present techniques to detect three commonpatterns of parallelism in C programs that use recursive data structures.These patterns include, function calls that access disjoint sub-pieces oftree-like data structures, pointer-chasing loops that traverse list-like datastructures, and array-based loops which operate on an array of pointerspointing to disjoint data structures. We design dependence tests usinga family of three existing pointer analyses, namely points-to, connectionand shape analyses, with special emphasis on shape analysis. To iden-tify loop parallelism, we introduce special tests for detecting loop-carrieddependences in the context of recursive data structures. We have imple-mented the tests in the framework of our McCAT C compiler, and wepresent some preliminary experimental results.1 Introduction and MotivationThis paper focuses on detecting three common patterns for parallel computationsthat use recursive data structures: (1) function-call parallelism including parallelrecursive calls on tree-like structures; (2) forall parallelism for loops traversingarrays of list/tree-like structures; and (3) foreach parallelism for loops traversinglist/tree-like structures, which is similar to doacross parallelism.In order to safely detect these patterns of parallelism in C programs, onemust deal with dependences due to scalars, dependences due to pointers to stack-allocated objects (stack-directed pointers), and dependences due to pointers toheap-allocated objects (heap-directed pointers). Thus, our approach uses the re-sults of the family of pointer analyses that have been implemented in the McCAToptimizing/parallelizing C compiler: points-to analysis[1], connection analysis[2]and shape analysis[3]. Points-to analysis is used to detect dependences due toscalars and stack-directed pointers, while connection and shape analysis are usedto detect dependences due to heap-directed pointers.The main focus of this paper is not the pointer analyses themselves, butrather how we can use the results of the analyses to detect parallelism. Theremainder of the paper is structured as follows. In Section 2 we introduce thethree parallelism patterns in more detail. In Section 3 we describe the overallsetting of our approach, and present the rules to detect function call parallelism.? This research supported in part by NSERC and FCAR.
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We provide rules for safely identifying loop parallelism in Section 4. Section 5gives some preliminary empirical results indicating how often we can success-fully identify the patterns. Section 6 discusses related work, and Section 7 givesconclusions and future work.2 Parallel PatternsThe focus of our approach is on detecting coarse-grain parallelism in the contextof function calls and loops, that perform computation on heap-based recursivedata structures. The three patterns we want to identify are illustrated in Fig-ure 1. These patterns typically arise in programs using recursive data structures.Below, we discuss the parallelism opportunities they o�er.void treeAdd(tree *t){ if (t == NULL)return;Q: tl = t->left;L: treeAdd(tl);M: tr = t->right;N: treeAdd(tr);t->i = tl->i +tr->i;}
for (i = 0; i < N; i++){ t = list_arr[i];compute(t, x, y);} while (lp != NULL){ S: lp->x = lp->y * 5;T: lp->y = lp->x * 6;U: lp = lp->next;}(a) function-call (b) forall (c) foreachFig. 1. Parallelism PatternsFunction-call parallelism:In Figure 1(a), the two calls to the function treeAdd, respectively performthe addition for the left and right sub-trees of the tree pointed to by the pointert. If the sub-trees are disjoint, the two function calls access disjoint regions ofthe heap, and can be executed in parallel.forall parallelism:Figure 1(b) shows an array-based loop. However, the array list arr is anarray of pointers, with each pointer pointing to a heap data structure (a list). Ifeach pointer points to a disjoint heap data structure, then each call to computeaccesses a disjoint heap region, and the loop can be fully parallelized, with alliterations executed in parallel.foreach parallelism:Figure 1(c), shows a loop traversing a linked list. The loop body consists oftwo parts: one that does the computation on the list elements, and the secondthat performs the navigation through the list. The computation part is formedby the statements S and T in the loop, while the navigation part includes thestatement U: lp = lp->next. The pointer used to navigate through the list(lp), is termed as navigator. The parallelism in this loop arises from the fact
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p2 = next(p1)

p3 = next(p2)

p4 = next(p3)

compute(p1)

compute(p2)

compute(p3)

while (lp != NULL){ for(i=0; lp != NULL &&i<max_proc; lp=lp->next){ ptr[i] = lp; i = i + 1;}forall(j = 0; j < i; j++){ lp = ptr_arr[j];lp->x = lp->x * 5;lp->y = lp->y * 6;}}(a) Staggered Execution (b) foreach to forallFig. 2. Parallel Execution of a foreach Loopthat each loop iteration visits a disjoint node in the list. However, this loopcannot be considered a forall loop, because its iterations cannot be executedin parallel. The loop contains an intrinsic loop-carried dependence due to thenavigator. The navigator for the next iteration is obtained via the navigator forthe current iteration. We call these loops as foreach loops.The parallelism in a foreach loop can be extracted by executing it in a stag-gered fashion as shown in Figure 2(a). Here, �rst the navigator for the nextiteration is obtained. Subsequently, the next iteration can start before the �rstiteration completes, and the computation phases of the two iterations can over-lap. Alternatively, if the navigation overhead of the loop is minimal comparedto the computation performed, the navigators could �rst be stored in an arrayof pointers of size max proc, where max proc is the number of processors be-ing used, via a separate pointer-collecting loop. The original loop can then beexecuted as a forall loop. This technique is illustrated in Figure 2(b).3 Dependence Testing Framework for Function CallParallelismTo identify if two function calls can be executed in parallel, we need to detectif there is a dependence between the statements containing them. To this end,we have developed a general dependence test that checks if a dependence existsbetween any two given statements in a function. The overall algorithm for thetest depTest is outlined in Figure 3. It has been implemented at the high levelSimple intermediate representation of the McCAT C compiler [14].The test depTest proceeds in a hierarchical fashion. Given two statements,stmtS and stmtT, and the type of dependence to be detected (
ow, anti oroutput), it �rst applies the stackTest to disambiguate direct/indirect referencesto the stack. This test uses the results of points-to analysis [1], which estimatestargets of stack-directed pointers as points-to triples of the form (ptr, target, pos-sible/de�nite). If the dependence cannot be disproved, the test then checks if thedependence is only due to heap accesses. In this case, heap analysis informationis used. First, the test connectionTest is applied. This test uses connection-based
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heap read/write sets to identify if the two statements access heap locations be-longing to disjoint heap data structures [2, 4]. If the test succeeds, statementsare reported independent. Otherwise the test shapeTest is invoked to furtheridentify if the statements access disjoint sub-pieces of a data structure. This isthe focus of this paper. Detailed description of the �rst two tests can be foundin [4, 5].fun depTest(stmtS, stmtT, depType) =if (stackTest(stmtS, stmtT, depType) == NoDep)return NoDep; /* no dependence *//* use heap analyses if dependence only due to heap */else if (stackTest(stmtS, stmtT, depType) == OnlyHeap)if (connectionTest(stmtS, stmtT, depType) == NoDep)return NoDep; /* access disjoint heap data structures */if (shapeTest(stmtS, stmtT, depType) == NoDep)return NoDep; /* access disjoint pieces of a data structure */return Dep;/* heap dependence cannot be disproved */ 10else/* stack dependence is not only due to the symbolic heap location */return Dep; /* dependence cannot be broken */Fig. 3. Checking if two Statements are DependentThe test shapeTest uses shape analysis information [3]. Shape analysis es-timates the shape of the data structure accessible from a given heap-directedpointer: is it tree-like, DAG-like or a general graph containing cycles? Knowledgeabout the shape of the data structure accessible from a heap-directed pointer,provides crucial information for disambiguating heap accesses originating fromit. For a pointer p, if p.shape is Tree, then any two accesses of the form p->fand p->g will always lead to disjoint subpieces of the tree (assuming f and gare distinct �elds). If p.shape is DAG, then two distinct �eld accesses p->f->fand p->g can lead to a common heap object. However, if a dag-like structure istraversed using a sequence of links, every subsequence visits a distinct node. Thisinformation can be used to disambiguate heap accesses in di�erent iterations ofa loop, or di�erent recursive calls, traversing such a data structure, as discussedin the following sections.3.1 Shape Dependence TestThe shape dependence test relies on the shape of the data structure being tra-versed, and the access paths used to reach particular node(s) in the data struc-ture. The access paths are computed with respect to a given node in the datastructure, pointed to by the anchor pointer. An anchor pointer is a pointer thatpoints to a �xed node in the data structure over the program region starting fromthe statement that de�nes it, and ending at the statement T, where a dependenceis being checked from some statement S to statement T. Once the access pathsare computed with respect to the anchor, dependence is resolved by checking if
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starting from the anchored node, the two paths can lead to the same node, inview of the shape of the data structure.The shape dependence test is outlined in Figure 4. It �rst collects the sets ofpointers pSetS and pSetT that access the heap, respectively for stmtS and stmtT.These sets are computed using the points-to based read/write set information.The shape dependence test is performed on each pair of pointers (ptrS, ptrT)from the two sets, and no dependence is reported only if the test succeeds oneach pair. For a given pair, if the shape attribute of either pointer is found to becyclic, a dependence is reported and the test terminates. If the shape attributesare acyclic, anchor-based access paths are constructed, as explained below.fun shapeTest(stmtS, stmtT, depType) =[pSetS, pSetT] = heapAccessPtrs(stmtS, stmtT, depType);foreach pair (ptrS, ptrT) 2 pSetS�pSetTif (isCycle(ptrS.shape) or isCycle(ptrT.shape))return Dep; =* Cyclic data structures *=[defS, defT] = getDefChains(ptrS, stmtS, ptrT, stmtT);anchorStmt = �ndAnchor(defS, defT);if (anchorStmt != Null)anchor = getRef(anchorStmt, lhs);if (!anchor or isCycle(anchor.shape)) 10return Dep; =* cannot �nd anchor or its shape is cyclic *=[pathS, pathT] = getPathExprs(anchor, defS, defT);if (�eldsUpdatedBetween(pathS, stmtS, pathT, stmtT, anchorStmt))return Dep; =* structural modi�cation involved *=if (checkPathExprs(pathS, stmtS, pathT, stmtT, anchor) == Dep)return Dep; =* path exprs indicate a possible con
ict *=return NoDep; =* no dependence detected *=Fig. 4. Shape Dependence TestConstructing Access Paths using De�nition ChainsThe �rst step in the construction of access paths is computation of de�nitionchains defS and defT for the pointers ptrS and ptrT. De�nition chains are con-structed by recursively traversing the reaching de�nitions of the given pointers,as illustrated by the following example. The complete algorithm is presentedin [5].Consider the construction of the de�nition chain for the use of pointer tr atthe function call statement N: treeAdd(tr) in Figure 1(a). The de�nition thatreaches this use is from the statement M: tr = t->right. So this statement isput in the de�nition chain. Next, the traversal looks for de�nitions that reachthe use of pointer t at the statement M. In this case the de�nition comes from thefunction header, which is appended to the de�nition chain. Since the traversalcannot proceed any further up, it stops. Similarly, the de�nition chain for the useof pointer tl at statement L would consist of the statement Q and the functionheader.
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In general, the de�nition chain traversal stops when either it has reached thefunction header, or it cannot �nd a unique de�nition that de�nitely reaches thegiven use [5]. This ensures that we construct only one de�nite access path for agiven pointer, and not a set of possible paths. This is done for e�ciency reasons,as comparing a set of paths can be expensive and further is less likely to disprovea dependence.Finding a Common AnchorOnce the de�nition chains are constructed, the next step is to �nd an anchorpointer, with respect to which both the pointers under consideration can bede�ned. In our example above, the pointer t can be considered as an anchorpointer, as both pointers tl and tr can be de�ned in terms of t. This is inferedfrom the fact that both the pointers have a common de�nition of the pointer tin their de�nition chains. Now, using the function header de�nition of t as theanchor, the de�nition chains of pointers tl and tr are traversed to construct theirrespective access paths with respect to the anchor t, giving the paths t->leftand t->right. The detailed algorithms for �nding the anchor and constructingthe access paths can be found in [5].Comparing Access Paths for Dependence DetectionThe access paths are given to the function checkPathExprs, which detects ifthey de�nitely lead to disjoint parts of the data structure. Note that shapeTestreaches this function only if the shape of the data structure being traversed isTree or DAG, and the traversal �elds are not being modi�ed. The input to thefunction checkPathExprs consists of two statements, stmtS and stmtT, and therespective access paths, pathS and pathT, expressed with respect to the anchorpointer. The function uses three operations to compare the access paths:equivPaths(pathS, pathT): This function checks if the two access paths areequivalent, i.e., consist of the same sequence of �eld accesses. For example the ac-cess path t->left->right is equivalent to the access path t->left->right, butnot equivalent to the access paths t->left or t->left->left. Two equivalentaccess paths always lead to the same node.subPath(pathS, pathT): This function checks if the access path pathS is aproper sub-path of the access path pathT, i.e., pathS contains k �eld accesses lessthan pathT, and is equivalent to the access path obtained by removing the lastk �eld accesses from pathT, where k � 1. For example, the access path t->leftis a proper sub-path of the access path t->left->right, but not of the accesspaths t->left or t->right. For acyclic data structures (anchor.shape is Treeor DAG), if an access path is a proper sub-path of another path, the two pathslead to disjoint nodes. Further, the node reached via the former path cannot beaccessed from the node reached via the latter path.disjointPaths(pathS, pathT): This function checks three conditions: (i) theaccess path pathS is not equivalent to the access path pathT, (ii) pathS is not aproper sub-path of pathT, and (iii) pathT is also not a proper sub-path of pathpathS. For example, t->left and t->right are disjoint paths, while t->left andt->left->right are not. For tree-like data structures (anchor.shape is Tree),disjoint paths not only lead to disjoint nodes, but also one node cannot be
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accessed from the other. Thus disjoint paths lead to disjoint sub-pieces of tree-like data structures.If the data structure is DAG-like (anchor.shape is DAG), disjoint paths canlead to a common node. For example, if left and right links of the node pointedto by the anchor pointer t, point to the same node (giving a DAG), the disjointpaths t->left and t->right will lead to the same node.fun checkPathExprs(pathS, stmtS, pathT, stmtT, anchor) =case type(stmtS) of< CallStmt > =>case type(stmtT) of< CallStmt > =>if (isDag(anchor.shape))return Dep; =* DAG shape is not useful with two call stmts *=else =* shape is Tree *=return(disjointPaths(pathS, pathT));< SimpleStmt > => 10if(subPath(pathT, pathS))return NoDep; =* su�cient condition *=if (isTree(anchor.shape))return(disjointPaths(pathS, pathT));< SimpleStmt > =>case type(stmtT) of< CallStmt > =>if(subPath(pathS, pathT))return NoDep;if (isTree(anchor.shape)) 20return(disjointPaths(pathS, pathT)); =* need not be a subpath *=< SimpleStmt > =>if (isTree(anchor.shape))return(!equivPaths(pathT, pathS));else =* anchor shape is DAG : one is subpath of another *=return(subPath(pathT, pathS) or subPath(pathS, pathT));Fig. 5. Comparing Access Paths for Dependence DetectionDi�erent Cases for Dependence DetectionWe now discuss the di�erent cases and the associated disambiguation rulesgiven in the function checkPathExprs in Figure 5. We have four cases dependingon if the two statements, stmtS and stmtT, are call statements (contain a functioncall) or simple statements (do not contain a function call).Case 1: Both statements are call statementsAs call statements can access whole sub-pieces of a data structure, two callstatements can be independent only if the access paths lead to disjoint sub-piecesof the data structure. This requires that the two access paths are disjoint andthe shape attribute of anchor is Tree, as shown in the function checkPathExprs(Figure 5). This is the case for our example based on the treeAdd functionshown in Figure 1(a). The two access paths are t->left and t->right, which
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are disjoint, and the shape attribute of the anchor pointer t is Tree. Thus thetwo calls to treeAdd are independent and can be executed in parallel.Case 2: stmtS is a call statement and stmtT is a simple statementHere stmtS can access a sub-piece of the data structure, while stmtT canaccess only �elds in a speci�c node of the data structure. This is because in ourSimple representation, a statement can only have one level of indirection. Thusfor the two statements to be independent, pathS should lead to a node, which isdisjoint from the node corresponding to pathT, and also cannot reach the latternode. This can be guaranteed if pathT is a proper sub-path of pathS. The shapeattribute of the anchor can be either Tree or DAG in this case. For example, ifpathS is t->left and pathT is simply t, the proper sub-path condition is satis�ed,and stmtS cannot access the node accessed by stmtT. If shape attribute of theanchor is Tree, the statements will be independent also for the case when pathSand pathT are disjoint. Note that Case 3 is analogous to Case 2, with stmtSas simple statement, and stmtT as call statement.Case 4: Both statements are simple statementsIn this case both statements can respectively access only some speci�c nodeof the data structure. We simply need to check that pathS does not lead to thesame node as pathT. This condition is satis�ed, if pathS is not equivalent topathT, when shape attribute for the anchor is Tree. With DAG attribute, weneed to check for the stronger condition that one of the access paths is a propersub-path of another.For example, let pathS be t->right->left and pathT be t->left->right.The access paths are not equivalent. With shape attribute as Tree, the twoaccess paths cannot lead to the same node. With DAG attribute they can leadto the same node. However, the access paths t->left and t->left->right canbe proven to lead to disjoint nodes even with DAG attribute. This is becausethe common sub-path in the paths leads them to the same node, and then theadditional �eld access in the latter path, leads it to a distinct node as the datastructure is acyclic.Above, we have described our overall strategy for detecting dependence be-tween two given statements in a function, and discussed in detail how to useshape information for dependence testing. We use the test (depTest) during theDDG (data dependence graph) construction phase of the EARTH-McCAT com-piler [15]. The DDG is then used to identify statements/function calls that canbe executed in parallel, and to partition the program into threads.4 Loop ParallelismIn this section, we present techniques to identify loop-level parallelism, in theform of forall and foreach loops traversing recursive heap data structures. For�nding loop parallelism, we need to detect the presence of loop-carried depen-dences (henceforth refered to as LCDs). Two statements in a loop have an LCD,if a memory location accessed by one statement in a given iteration, is accessed
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by the other statement in a future iteration, with one of the accesses being awrite access.The presence of LCDs in a loop indicates that its iterations are not indepen-dent, and hence cannot be executed in parallel. Our particular focus is on �ndingheap-based forall and foreach loops (described in section 2). A forall loop shouldnot have any LCD, while a foreach loop can only involve an LCD with respectto the navigator. Considering these constraints, we �rst describe the method fordetecting foreach loops, and then explain how it can be adapted to detect forallloops. Given a loop, we identify if it is a heap-based foreach loop, using the stepsexplained in the following subsections.4.1 Good Loop DetectionThis is a pre-processing step, which detects potential heap-based foreach loopsin the program. It is required so that we do not incur the overhead of detect-ing LCDs for each loop in the program. The criteria used to label a loop as agood loops are as follows: (i) the loop body involves read/write accesses to heaplocations, (ii) the loop body is free from irregular control 
ow constructs suchas break, continue, or return statements, or system calls such as exit andabort, and thus control can exit the loop only from the loop condition test; and(iii) a navigator can be identi�ed for the loop. The second condition is requiredto ensure the correctness of the parallelizing transformations illustrated in Fig-ure 2, as they assume that the loop does not terminate prematurely. The thirdcondition is required to detect that the loop actually navigates a recursive heapdata structure in a regular fashion.Identifying the NavigatorThe overall algorithm for identifying the navigator is outlined in in Figure 6.The process is closely related with the variables used in the loop condition test.For a given variable in the loop test, say testVar, the function �ndNavigatorproceeds as follows. First, a de�nition chain is constructed for the use of testVarin the loop test. The function getLoopDefChain is used for this purpose. Thisfunction is similar to the function getDefChain de�ned in Figure 4. However, itonly considers the de�nitions that arise from a statement within the given loop(loop-resident de�nitions). It terminates when either it cannot �nd a uniqueloop-resident de�nition that de�nitely reaches the given use, or it encounters aloop-resident de�nition for the second time [5]. In the latter case a recurrenceis reported. If the traversal terminates without �nding a recurrence, it returnsNull, indicating that a navigator cannot be detected.If the function getLoopDefChain reports a recurrence, it indicates the pres-ence of a variable in the loop whose value for the next iteration is de�ned interms of its current value. Such a variable is a potential candidate for being anavigator. In this case, the de�nition chain is used to construct an access pathfor the loop test variable testVar. This access path is called the test expressionand the base variable in the path is called the navigator. The test expressionindicates how the testVar for the next loop test is obtained from the naviga-tor for the current iteration. The component of the access path, contributed by
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=* �nd the navigator for the given loop if one exists *=fun identifyNavigator(loopStmt) =cond = loopStmt.cond; =* loop condition test *=navigator = �ndNavigator(cond.lhsvar, loopStmt);if (navigator != Null) =* lhs var succeeds *=return navigator;else =* try rhs var in the loop test *=return (�ndNavigator(cond.rhsvar, loopStmt));=* �nd the navigator for the given loop with respect to the var *= 10fun �ndNavigator(var, loopStmt) =defN = getLoopDefChain(var, loopStmt, loopStmt);if (defN == NULL jj recFlag(defN) != Recur)return Null; =* no recurrence exists in the de�nition chain *=pathT = getPathExpr(loopStmt.cond.var, defN); =* test expression *=pathN = getNavExpr(pathT); =* navigator expression *=varN = getBaseVar(pathN); =* navigator *=if (�eldsUpdated(pathN, loopStmt, navigator))return Null; =* structural modi�cation involved *=loopStmt.navigatorExpr = pathN; 20loopStmt.navigator = varN;return (varN); Fig. 6. Identifying the Navigatorthe de�nition(s) involved in the recurrence, is called the navigator expression.It indicates how the navigator for the next iteration is obtained in terms of thecurrent navigator. We illustrate these concepts via an example below.For example, consider the loop in Figure 1(c). The loop test variable in thiscase is the pointer lp. Its loop-resident de�nition comes from the statementS:lp = lp->next. So it is added to the de�nition chain. Next, the loop-residentde�nition for the use of lp at S is sought. It again happens to be the statement S.Here the de�nition chain construction terminates and a recurrence is reported.The de�nition chain gives the access path lp->next, which is the test expressionfor the loop, and the base pointer for the expression, lp, is the navigator. Here,since the navigator is identical to the loop test variable, the navigator expressionis same as the test expression. More detailed examples for navigator identi�cationcan be found in [5].4.2 Verifying the NavigatorOnce a navigator is identi�ed, and a navigator expression is constructed, the nextstep is to verify if the navigator visits a distinct node in the data structure ineach iteration. Thus, the function �ndNavigator checks that none of the �elds inthe navigator expression (navigator �elds) are updated inside the loop. For thispurpose connection-based heap read/write sets are used [5]. This check ensuresthat the navigator advances in a regular fashion from one iteration to the next
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iteration, i.e., the �elds along which the data structure is navigated remainstatic through the loop execution. Further, note that the navigator is de�nitelyadvanced in each iteration using the navigator expression, and not conditionally.From this information, we can make the following important observations.Observation 1: If the shape attribute of the navigator is Tree or DAG, the nav-igator expression will lead the navigator to a distinct node in the data structure,in each iteration. In this case the data structure is acyclic, and since the navi-gator is advanced using the same expression every iteration (lp = lp->next),it cannot revisit a node.Observation 2: If the shape attribute of the navigator is Cycle, the above claimstill holds in an important case. This case represents loops, where the loop testinvolves testing a heap-directed pointer, say ptr, against a constant (ptr !=NULL) or another pointer that is loop-invariant (ptr != b), where b could bethe navigator for the outer loop. Such loops typically arise in C programs usingrecursive data structures.For such loops, if the navigator (ptr) visits a given node a second time, theloop will execute in�nitely. This is because the navigator �elds are not updatedinside the loop body. Consider again the loop in Figure 1(c). Suppose after threeiterations, its navigator lp visits the node it visited at the beginning of theloop. Since the navigator �eld next is not updated, lp will visit this node everythree iterations, and the condition (lp == NULL) will never be satis�ed, givingan in�nite loop. Note that during good loop detection, we have already ensuredthat the only exit point for the loop is the loop condition test.Thus, with the assumption that a loop does not run in�nitely, we can inferthat its navigator visits a distinct node in each iteration, for an important classof loops. These loops typically traverse parts of a cyclic data structure in anacyclic fashion: for example a loop that traverses a doubly linked list only usingthe next link. We term such loops as acyclic loops.4.3 Detecting Heap-based Loop-carried DependencesOnce a valid navigator is found for a loop, we check if the loop involves any LCDswith respect to heap accesses. The function heapLCD in Figure 7, outlines thisdependence test. It takes as input any two statements belonging to the loop,and determines if an LCD of depType (
ow, anti or output) exists betweenthem with respect to heap accesses. Given two statements from the loop, stmtSand stmtT, and the pointers they use to access the heap (ptrS and ptrT), thetest �rst constructs the access paths for the two pointers with respect to thenavigator. This is similar to constructing the access paths with respect to theanchor, for the shapeTest. Next, it compares the two access paths to detect ifthey can introduce an LCD. These access paths are termed as navigator accesspaths (NAPs). In case, the NAPs cannot be constructed, dependence is reported.While traversing a heap data structure, an LCD can be introduced when�elds of neighbor nodes, i.e., nodes other than the one being currently visitedby the navigator, are accessed. To access the neighbor nodes via the navigator,pointer �elds must be traversed. Thus a NAP can lead to a neighbor node only
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fun heapLCD(stmtS, stmtT, loopStmt, depType) =[pSetS, pSetT] = heapAccessPtrs(stmtS, stmtT, depType);navigator = loopStmt.navigator;foreach pair (ptrS, ptrT) 2 pSetS�pSetT[defsS, defsT] = getLoopDefChains(ptrS, stmtS, ptrT, stmtT, loopStmt);[pathS, pathT] = getPathExprs(navigator, defsS, defsT);if (!pathS or !pathT)return Dep; =* reference cannot be expressed wrt navigator *=if (isTree(navigator.shape)) =* traversing a tree�like structure *=if (�eldsUpdated(pathS, loopStmt, navigator) jj 10�eldsUpdated(pathT, loopStmt, navigator))return Dep; =* structural modi�cation involved *=if (navigatorFieldsUsed(pathS, pathT, loopStmt.navigatorExpr))return Dep; =* can access nodes from other iterations *=else if (isAcyclic(loopStmt)) =* loop test is (ptr != someConstant) *=if (ptrFieldsUsed(pathS, stmtS, pathT, stmtT))return Dep; =* can access nodes from other iterations *=else return Dep; =* cannot check this depenence: assume dependence *=return NoDep; =* no loop�carried dependence detected *=Fig. 7. Test for Loop-Carried Heap Dependencesif it involves one or more pointer �elds. With this observation, we can infer thattwo statements can induce an LCD, only if one of the NAPs involves pointer�elds. Otherwise, the NAPs lead to �elds in the node currently being visited bythe navigator, without introducing any LCD.The function heapLCD essentially makes the above check. Additionally, itmakes a weaker check if the shape attribute of the anchor is Tree. In this case,the NAPs can use pointer �elds other than the navigator �elds. For example, fora loop traversing a list using the pointer lp, if the shape attribute of lp is Tree,the statement lp->hdr->num++ will not induce an LCD. This is because theheader node cannot be common for any two nodes in the list, else it will violatethe Tree shape attribute. However, the assignment statement lp->next->i =lp->i will still induce the dependence as the access path lp->next->i uses thepointer �eld next, which is a navigator �eld.If no heap-based LCDs are detected, we 
ag this loop as a foreach loop withrespect to the heap accesses. To identify it as a real foreach loop, we use existingtests implemented in the McCAT C compiler to check against LCDs inducedby accesses to scalar variables, array references [11, 12], and stack-based indirectreferences [4]. If the only LCD detected is with respect to the navigator, the loopis 
agged as a real foreach loop. Otherwise, it is 
agged as a non-foreach loop.4.4 Identifying forall LoopsTo identify heap-based forall loops of the type shown in Figure 1(b), we use asimilar strategy as for detecting foreach loops. The key di�erence is that the nav-igator for the forall loops is an integer, and the navigator expression is an integer
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expression. The tests for checking heap-based LCDs are modi�ed to compare ac-cess paths which consist of array expressions as opposed to pointer references.To this end, subscript tests developed for array dependence testing are used.For example, in Figure 1(b), the navigator access path for the heap pointer tis computed as list arr[i]. From the information that i is a navigator, andthe shape attribute of list arr is Tree, the test infers that pointer t accessesa disjoint list in each iteration and cannot induce an LCD. Further, if it needsto compare access paths of the form list arr[i + j] and list arr[i + k], ituses subscript tests from array dependence testing [11, 12], to identify LCDs.5 Experimental ResultsWe have implemented the dependence tests described in sections 3 and 4 inthe framework of our McCAT C compiler. We have done a preliminary study oftheir e�ectiveness on a set of four recursive data structure based C benchmarkprograms. The results are summarized in Table 1.Program Description Data Structures Par foreach forall Total TotalCalls Loops Loops Loops Callstreeadd Tree Addition Binary Tree 4 0 0 0 4power Power System Opt. k-ary Tree 0 0 4 10 25circuit Sparse Matrix Solver Doubly-linked Lists 0 14 0 24 35pug Grid Triangulation Interconnected Lists 0 5 0 15 34Table 1. Benchmark ResultsFor the treeadd benchmark, the test depTest �nds two pairs of parallel callsrespectively to the functions buildTree and treeAdd. The forall loops in thepower benchmark are detected using the heapLCD test. These loops iterate onarrays of pointers to tree data structures, and form the most compute-intensivepart of the code. The benchmarks pug and circuit use cyclic data structures, butperform majority of their computation inside acyclic list-traversing loops, whichare detected as foreach loops by the heapLCD test. Finally, the hand-writtenEarth-C [10] versions of the benchmarks treeadd and power, that only use theparallelism detected by our dependence tests, respectively obtain speed-up byfactors of 16 and 12 on the EARTH-MANNA multithreaded machine [10] using16 processors. We are presently working on analyzing and collecting runtimeperformance improvement statistics for a larger set of benchmarks.6 Related WorkA considerable amount of work has been done on the problem of pointer analysisitself, and a detailed discussion can be found in [5]. More directly related to thispaper are methods that use the results of heap pointer analysis in the context ofdependence analysis and parallelization. The approaches include: techniques us-ing path expressions to name locations [13], using syntax trees to name locations
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[6], extending k-limited graphs with location names[9]; and dependence analysisbased on shape information and path expressions [8]. The focus of these tech-niques is on identifying function-call parallelism for recursive data structures,and the heap analyses used are substantially more complex than our connec-tion and shape analyses. Further, they do not consider the detection of loopparallelism, and also do not consider the presence of stack-directed pointers.In contrast to the above techniques which are based on automatic heap anal-ysis, Hummel et al. [7] use a language-based approach. They rely on the pro-grammer to provide the information about the shape of the data structure viaaliasing axioms. To compute dependence between two statements, they collectaccess paths with respect to an anchor. A theorem prover is used to identifyif, given the aliasing axioms, the access paths can lead to the same node. Thisapproach is quite powerful, as the aliasing axioms can accurately express theshape of even complex cyclic data structures, and the theorem prover can com-pare complex access paths. Our (shape) dependence test also uses the conceptof collecting access paths with respect to a common anchor. However, it relieson connection and shape information that is automatically computed, is focusedon identifying speci�c parallelism patterns, and thus uses only two types of ac-cess path comparisons (equivPaths and subPath2) which can be done e�ciently.Further, it also considers identi�cation of loop-carried dependencies, which iscrucial for detecting loop parallelism.7 Conclusions and Future WorkThis paper has focused on how to use pointer analysis for detecting parallelism.We used a family of pointer analyses that run in a hierarchical fashion, fordependence testing. We particularly focused on using shape information, andpresented special dependence tests that build access paths with respect to acommon anchor, and then compare the two paths in view of the shape informa-tion available. Further, we introduced a separate test for identifying loop-carrieddependences, which is crucial for detecting loop-parallelism. We also proposedthe foreach loop construct for pointer-chasing loops, along with techniques toextract the parallelism available. Finally, we presented preliminary experimentalresults for a set of C benchmark programs.Our future work will be in three major directions. Firstly, we plan to eval-uate the e�ectiveness of our dependence tests on a larger set of benchmarks.Secondly, we plan to do a detailed study of the run time performance improve-ment achieved, due to the parallelism detected. Finally, we plan to continueto develop new analyses and transformations to detect parallelism in pointer-intensive programs, particularly those that use complex cyclic data structures.2 The disjointPath comparison is done via a combination of equivPaths and subPathcomparisons.
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